Issue 21, 2012

Drop formation in non-planar microfluidic devices

Abstract

Microfluidic devices can be used to produce single or multiple emulsions with remarkably precise control of both the contents and size of the drops. Since each level of a multiple emulsion is formed by a distinct fluid stream, very efficient encapsulation of materials can be achieved. To obtain high throughput, these devices can be fabricated lithographically, allowing many devices to operate in parallel. However, to form multiple emulsions using a planar microfluidic device, the wettability of its surface must switch from hydrophobic to hydrophilic on the scale of micrometers where the drops are formed; this makes the fabrication of the devices very difficult. To overcome this constraint, we introduce non-planar microfluidic devices with graduated thicknesses; these can make drops even when their wetting properties do not favor drop formation. Nevertheless, the dependence of drop formation on the device geometry, the flow rates and the properties of the fluids, particularly in the case of unfavorable wetting, is very complex, making the successful design of these devices more difficult. Here we show that there exists a critical value of flow of the continuous phase above which drop formation occurs; this value decreases by two orders of magnitude as the wetting to the device wall of the continuous phase improves. We demonstrate how this new understanding can be used to optimize device design for efficient production of double or multiple emulsions.

Graphical abstract: Drop formation in non-planar microfluidic devices

Supplementary files

Article information

Article type
Paper
Submitted
11 May 2012
Accepted
28 Jun 2012
First published
04 Jul 2012

Lab Chip, 2012,12, 4263-4268

Drop formation in non-planar microfluidic devices

A. Rotem, A. R. Abate, A. S. Utada, V. Van Steijn and D. A. Weitz, Lab Chip, 2012, 12, 4263 DOI: 10.1039/C2LC40546F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements